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Abstract. Heterosynaptic plasticity is a form of ‘off-target’ synaptic
plasticity where unstimulated synapses change strength. Although some
theoretical work has explored its implications [7], its functions for brain
learning remains unclear. Here we propose that one purpose of heterosy-
naptic plasticity is to encourage small-world connectivity [28]. Small-
world topologies are ubiquitous in natural and biological networks, such
as the brain [3], and have been shown to exhibit increased computa-
tional efficacy, efficiency, and robustness [28]. We used numerical and
mathematical analysis to compare the evolution of fully-connected ab-
stract weighted graphs under different plasticity rules (homosynaptic,
competitive heterosynaptic, and cooperative heterosynaptic), and found
that they yield distinct network architectures. In simple distributions of
network activity patterns, heterosynaptic plasticity-based learning — in
contrast to Hebbian-style homosynaptic learning — not only reduces the
over-saturation of synaptic weights, but causes the networks to rapidly
converge to small-world topologies. We find that under a variety of con-
stant neural activities, different cooperative and competitive heterosy-
naptic rules can promote small-worldness, and we demonstrate the com-
binations of patterns of neural activity and specific heterosynaptic rules
which promote the strongest measure of small-world quality. Finally, we
implement more realistic and plausible network dynamics using weight-
dependent activities, and show that in this context specific combinations
of heterosynaptic rules continue to promote and maintain interesting
small-world network structures.
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1 Introduction

The link between structure and function in networks of complex systems is defini-
tive, but a clear and comprehensive understanding of it is nevertheless elusive
[22]. Network structures have been shown to have implications for the dynamics,
behaviour, or functions of the network in question [23] [4], such as in efficiency
and economy, memory capacity, enhanced signal-propagation speed, and resis-
tance to potential damage [28] [20]. A structural feature that has been identified
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as important for the function, efficiency, and robustness of networks is what
is termed “small-world” characteristics [28], [3]. Small-world networks exhibit
high degrees of local clustering and low average shortest path length. These fea-
tures encourage efficient but effective information processing and computation.
Small-world characteristics have been identified in biological neural networks [2]
[3].

An issue of interest in the intersection between network structure and func-
tion is that of synaptic plasticity. Studies have demonstrated plasticity’s involve-
ment in networks, such as in homeostasis, hub formation, efficient information
processing [27], improved network noise robustness and task performance [26],
and maintenance of networks in health and disease [25] [1]. Synaptic plasticity,
by dynamically altering the strength and efficacy of synaptic connections, plays
a crucial role in the brain’s ability to adapt and reorganise in response to various
stimuli and experiences. This adaptability underpins critical processes like learn-
ing and memory, and it may enable the brain to maintain optimal functionality
amidst changing internal and external environments. This research analysed het-
erosynaptic plasticity – a version of plasticity which operates on unstimulated
synapses – and its implications for small-world network structure.

2 Background: Plasticity and Network Structure

Synaptic plasticity is a fundamental property of synapses and occurs in a variety
forms [7]. It refers to a synapse’s ability to change its size, function, activity,
or efficiency in response to neural activity. Synaptic plasticity is believed to
be the foundational mechanism underlying learning, memory, attention, and
information processing in the brain [6]. In particular, it has been identified as a
key player in the interplay of network structure and function [1] [25], and many
aspects of its role in this area remain to be uncovered.

Fig. 1. Homosynaptic and heterosynaptic plasticity

There are two predominantly recognised forms of synaptic plasticity: homosy-
naptic and heterosynaptic (see Figure 1). Homosynaptic plasticity occurs at the
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synapses that were active/stimulated and is primarily regulated by Hebbian-type
learning [11]. This form of plasticity, often encapsulated in the adage “cells that
fire together wire together”, has received substantial theoretical and experimen-
tal support. Hebbian plasticity emphasises the necessity of concurrent activity in
both pre- and postsynaptic neurons for plasticity induction, which strengthens
the synaptic connections between co-active neurons, for instance by multiplica-
tive or spike-timing-dependent plasticity rules [12] [18]. This version of synaptic
plasticity is indubitably linked with network structure through its formation
and regulation of weighted connections. However, despite its foundational role
in learning and memory, several challenges persist with this mechanism.

Heterosynaptic plasticity refers to the ability of synapses that were not di-
rectly activated to undergo weight alterations, and may be understood as an “off-
target” version of plasticity. This form of synaptic plasticity presents a promis-
ing solution to the deficiencies inherent in homosynaptic plasticity, and may
provide additional insight into the brain’s memory and signal processing capac-
ities. Heterosynaptic plasticity has been experimentally observed [24] [15], and
the neurobiological mechanisms whereby it acts are continuing to be uncovered
— including intraneural molecular mechanisms, and interneural molecular and
cellular mechanisms. This version of plasticity is posited to serve several critical
functions, such as balancing synaptic changes, counteracting runaway dynamics
and ensuring that synapses retain their specificity. Furthermore, it may enhance
competition between synapses, which is vital for the selective strengthening and
weakening of synaptic connections, thereby addressing the issues present in a
solely Hebbian-based paradigm [29]. Other research has identified roles such as
pattern separation, memory specificity, increased signal-to-noise ratio, homeosta-
sis, functional clustering, and optimisation of network structure [6] [7].

Fig. 2. The various directions of heterosynaptic plasticity weight changes; in all four
cases, the central synapse is undergoing homosynaptic plasticity, while the two

neighbouring synapses are being heterosynaptically altered.
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Heterosynaptic plasticity may assume either a cooperative or competi-
tive role in the alteration of synaptic weights. Figure 2 illustrates the multiple
directions in which unstimulated synaptic weights may develop. Cooperative
plasticity refers to the instances where the heterosynaptically altered synapses
change in the same direction as the homosynaptically altered synapse, and com-
petitive plasticity is when the directions of change are opposite. However, it is
not clear what factors or protocols determine whether biological synapses will
undergo competitive or cooperative heterosynaptic plasticity [6]. These differ-
ences in weight change may have fundamental implications for network structure
and play vital roles in the optimising of function. Another noteworthy feature
of heterosynaptic plasticity function is its operation over both fast/local and
slow/global temporal and spatial scales. It can operate locally on single den-
drites at neighbouring spines, or across neurons and whole networks [6] (see
Figure 3).

Fig. 3. Example possible biophysical mechanisms of intra-neuron, inter-neuron, and
network-wide mediation of heterosynaptic plasticity through Arc protein (left) [21]

and astrocytes (right) [9].

A vital aspect of synaptic plasticity is its role in shaping and maintaining
network structure [25] [13]. Plasticity plays a large part in the organisation of
neural networks, perhaps in response to experiences, learning, and stimuli, and
possibly with a view to optimising functionality and processing capacities [8].
Synaptic plasticity, therefore, is a key player in the area of network structure and
function. Much remains to be uncovered regarding heterosynaptic plasticity’s
part, in particular, in forging and maintaining optimal network topologies.

3 Methodology

In this section we outline the methodology adopted in this study. Firstly we dis-
cuss the simple plasticity model in abstract weighted graphs, the learning/update
rules, and the network activity patterns based on probability distributions. We
present the requisite graph theoretic measures required for the analysis. And
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finally, we delineate an extension to the network dynamics, namely in a weight-
dependent activity pattern paradigm, and develop a “hybrid” heterosynaptic
plasticity rule, which incorporates elements of cooperative and competitive up-
dates in the one network.

3.1 Model of Plasticity Rules

Given a weighted graph, we define three possible cases for the weights/edges
while the network is in a state of activity. At any given time point, each edge is
either

(1) between two active
nodes,

(2) between one active
and one inactive
node, or

(3) between two inactive
nodes.

Fig. 4. Three cases for plasticity rules.

Based on these cases, we define the update/plasticity rules:

R1 =

{
wi,jn+1

= wi,jn + η1(1− wi,jn) Case (1)

wi,jn+1
= η2wi,jn otherwise

}
(1)

R2 =


wi,jn+1

= wi,jn + γ1(1− wi,jn) Case (1)

wi,jn+1
= γ2wi,jn Case (2)

wi,jn+1
= γ3wi,jn , Case (3)

 (2)

R3 =


wi,jn+1

= wi,jn + κ1(1− wi,jn) Case (1)

wi,jn+1
= wi,jn + κ2(1− wi,jn) Case (2)

wi,jn+1
= κ3wi,jn , Case (3)

 (3)

where R1 is a homosynaptic rule (with potentiation at active synapses), and
R2 and R3 are versions of competitive and cooperative heterosynaptic rules,
respectively. The formulation of these rules ensures that weights are bounded
between 0 and 1. The parameters ηi, γi and κi are the learning rates. We set
these throughout the study to

η1 = γ1 = κ1 = 0.2
η2 = 1− η1 = 0.8
η2 = γ3 = κ3 = 0.8

γ2 = 1− γ1/2 = 0.9
κ2 = κ1/2 = 0.1

although, different values of update rates give similar qualitative results.
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3.2 Activity Patterns on the Network

The activity of neural networks can often be described in terms of a distribution,
whether that be a distribution of firings rates, interspike intervals, bursts, or
network synchrony. These aspects of network activity are frequently seen to
take the form of a log-normal distribution [5]. A distribution of firing rates, for
example, may then be transformed into a distribution of probabilities; that is,
instead of describing the average firing rate of every neuron, we can describe
at every timestep the probability of that neuron being active. This enables us
to define a set of “neural activity patterns” using probability distributions. We
adopt the Beta distribution, which has compact support between 0 and 1, and
allows us with varying parameters α and β to encapsulate a variety of possible
activity pattern probability distributions. Figure 5 demonstrates some example
Beta distributions.

Fig. 5. Example Beta distributions which can be used to describe network activity
probability distributions

3.3 Graph Theoretic Measures

We used the following measures on the networks: weighted clustering coefficient,
average shortest path length, and small-world measure. The clustering coefficient
is a measure of the degree to which nodes in a graph tend to cluster together.
The weighted clustering coefficient [19] we used is:

C̃ =

∫ 1

0

Ct dt (4)

where Ct = C(At) for At
ij = 1 if wij ≥ t and 0 otherwise. The local clustering

measure C is given by [28]

C(i) =
|{ejk : vj , vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
(5)

This is intuitively the proportion of the number of links between the vertices
within a node’s neighbourhood divided by the number of links that could possibly
exist between them.
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Average shortest path length is a network topology concept that measures the
average number of (weighted) steps along the shortest paths for all possible pairs
of nodes in the network. It is a way of measuring the efficiency of information
or mass transport on a network. We utilise Dijkstra’s algorithm [10] to find the
path lengths dij and then compute:

L =
1

n(n− 1)

∑
i,j∈V
i ̸=j

dij (6)

These measures of clustering and average shortest path length are then used
to find the measure of small-world characteristic [28]. This is a coefficient which
seeks to capture the ratio of the clustering and average shortest path length of
the graph of interest with an equivalent, random graph. It is given by:

σ =
C̃/C̃rand

L/Lrand
> 1 (7)

where C̃, L denote the clustering and average shortest path length of the net-
work in question, and C̃rand, Lrand represent the same measures of an equivalent,
random graph.

3.4 Analytic Solutions

For the constant activity patterns we define with set probability distributions,
given the probability distribution of activity, we can find a closed-form solution
for the final resultant weight matrices:

R1: w∞
i,j ≈

η1pij
1− (pij(1− η1 − η2) + η2)

(8)

R2: w∞
i,j ≈

γ1pij
1− (pij(1− γ1 − 2γ2 + γ3) + qij(γ2 − γ3) + γ3)

(9)

R3: w∞
i,j ≈

(pij(κ1 − 2κ2) + κ2qij)

1− (pij(−1− κ1 + 2κ2 + κ3) + qij(1− κ2 − κ3) + κ3)
(10)

where pi,j is the probability of node i and node j being active, and qi,j is the
probability of node i or node j being active. These allow us to calculate graph-
theoretic measures on the final resulting weight matrices.

3.5 Weight Dependent Activity

In order to examine the effect of heterosynaptic plasticity rules on networks with
non-constant activity, we alter the network probability to be dependent upon the
neural weights. In this case, we define the probability of a node’s activity/firing
to be proportional to the accumulation of its total weights. This is given by

P (nodei active ) ∝

∑N
j=1
j ̸=i

wij

(N − 1)
(11)



8 James McAllister et al.

3.6 Hybrid Heterosynaptic Rule

In order to test whether or not a specific combination of cooperative/competitive
heterosynaptic plasticity might give even greater small-world measures, we intro-
duced a “hybrid” rule. This rule induced cooperative plasticity when the neurons
were relatively silent or sparse in activity (e.g. P (nodei active) < 0.5), and com-
petitive when the neurons were highly active (e.g. P (nodei active) > 0.5). This
was informed by insights from comparing the different activity patterns (see re-
sults in Section 4.3). We implemented this rule in the weight-dependent activity
pattern, to investigate the dynamics of activity and weight change, as well as
the resultant small-world structures.

4 Results

4.1 Evolution of Network Structures

We firstly implemented a pattern of activity with positively skewed heavy-tailed
probability distribution (Beta(1.5,4)) in a network of 50 neurons. This mimics the
statistics of log-normal firing rates [5]. Below is a simulation (across 100 trials) of
how the network characteristics evolve in this activity under the homosynaptic
(R1 left) and competitive/cooperative heterosynaptic (R2 middle, and R3 right)
plasticity rules.

Fig. 6. Graph theory measures for the three plasticity rules (N = 50 nodes).

Rule 1 (left) and Rule 2 (middle) display similar qualitative characteristics:
their clustering coefficients decrease, while their average shortest path lengths
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rapidly and exponentially explode. The absolute values of clustering and short-
est path length do not significantly matter here, but rather their values relative
to equivalent random graphs. The small-world coefficient (bottom) row captures
this. R1 and R2 show transient small-world qualities, but these decrease, in-
dicating that their resultant topologies are not small-world in nature. On the
other hand, Rule 3 (right) shows an increased clustering, and while the average
shortest path length increases, it converges to a stable value. The small-world
measure increases significantly beyond 1 and likewise stabilises, indicating that
the cooperative heterosynaptic rule (R3) induced a small-world topology.

Another indicator of small-worldness is found in the distribution of node
degree. Small-world networks contain a number of nodes that are highly inter-
connected, forming “hubs”. We therefore examined the final distribution of the
network weights as well as the weighted node degrees in the three plasticity rules
under the Beta(1.5, 4) activity.

Fig. 7. Weight and weighted node degree distributions (N=50 nodes).

In R1 and R2, we found that the weights and node degrees saturate towards 0.
However, the distribution of weights inR3 (Figure 7 top right) shows a preserving
of a greater spread of weights, with the distribution approximating log-normal,
which is observed in neural data for synaptic weights [16], [17] (see Figure 8).
The presence of some highly weighted node degrees in Rule 3 (Figure 7 bottom
right) gives further support to the fact that it possesses a small-world quality.
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Fig. 8. A closer look at the weight distribution from Rule 3 (left); Example
log-normal distribution of spine (synapse) size from mouse cortex (right)

4.2 Scaling the Network Size

We then tested the outcomes on larger networks with the Beta(1.5,4) activity
pattern. R1 and R2 fail to exhibit small-world characteristics across increas-
ing network size, whereas for R3 a strong small-world coefficient is consistently
present.

Fig. 9. Small-world measures across different sizes of networks.
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4.3 Analysing Different Activity Patterns

We investigated the effects of the three plasticity rules in networks across dif-
ferent Beta activity pattern probability distributions in networks of 100 nodes,
across 100 trials. These included the Beta(1.5,4) activity pattern already used,
but also four more, namely: Beta(1,1), Beta(4,1.5), Beta(0.5,0.5), and Beta(4,4)
(see Figure 10). These distributions ostensibly capture in a simple manner vary-
ing types of network activity.

Fig. 10. Average small-world measures across different activity patterns (N=100
nodes).

In all cases of activity, the solely homosynaptic paradigm fails to promote
small-world characteristics. On the other hand, the cooperative heterosynaptic
plasticity rule (R3) yields small-world topologies in all activity patterns. Interest-
ingly, in distributions where patterns are shifted toward the middle (Gaussian
distribution) or shifted right (i.e. greater activity, negatively skewed distribu-
tion), such as with Beta(4,1.5) or Beta(4,4), the competitive heterosynaptic
rule (R2) induces a greater degree of small-world qualities in resultant networks.
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4.4 Weight-dependent Activity Pattern

Whenever we simulate the three rules with a network activity dependent on
the weights, similar results emerge as with the pre-defined and constant activity
patterns (see Figure 11). However, the most notable difference is that the small-
world measure for the cooperative heterosynaptic plasticity rule is higher than
in the case with constant pre-defined activity patterns. This may be due to the
fact that basing the activity of the network proportional to the accumulations
of weights on each node tends to create a positive feedback loop, where highly
weighted nodes become more likely to be active, thus strengthening even further.
This kind of activity is likely to encourage the formation of highly clustered hubs
in the graph, thus yielding a high small-world coefficient.

Fig. 11. Graph theory measures for the three plasticity rules where the network
activity is variable, dependent on the network weights (N = 50 nodes).

Rule Mean small-world measure

R1 0.3
R2 0.7
R3 4.0

Table 1. Average small-world coefficients for the 3 plasticity rules in variable
weight-dependent network activity.
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4.5 Hybrid Heterosynaptic Rule

We investigated the role of a “hybrid” heterosynaptic plasticity paradigm, where
a combination of cooperative and competitive updates was present. From the
results across different constant activity patterns, we hypothesised that coopera-
tive plasticity might be optimal in patterns of sparse activity, while competitive
plasticity might be optimal in patterns of higher activity (see Figure 10). We
implemented this hybrid rule in a weight-dependent activity pattern, to examine
the dynamics that would emerge, and the resulting structural characteristics.

We found that the hybrid heterosynaptic rule yields a higher measure of
small-world characteristics than the solely cooperative and solely cooperative
heterosynaptic rules (Figure 12 top row). We examined the costliness of the
networks at each time step by summing the weights (Figure 12 bottom row);
interestingly, the hybrid network not only gives a higher small-world coefficient,
but also manages to maintain a more efficient or economical network, which is
evident from the smaller sum of graph weights.

Fig. 12. Small-world measure (top row) and sum of network weights (bottom row) in
the homosynaptic(R1), competitive heterosynaptic (R2), cooperative heterosynaptic
(R3), and hybrid heterosynaptic rules (N=50 nodes).
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5 Discussion

This research sought to investigate whether heterosynaptic plasticity has any role
in encouraging and maintaining small-world topologies. In a baseline neural ac-
tivity pattern (with a positively skewed, heavy tailed probability distribution),
a cooperative heterosynaptic plasticity rule does indeed induce small-world
characteristics (based on the measure proposed by [28]), across various network
sizes (Figure 9). Homosynaptic and competitive heterosynaptic rules in this ac-
tivity pattern show transient small-world properties, but these rapidly disappear
(Figure 6). An examination of the distribution of weights and weighted node de-
grees of final resultant graphs (Figure 10) further lends support to the claim that
the cooperative heterosynaptic rule creates small-world networks, owing to the
presence of highly clustered hubs. These final weight distributions furthermore
demonstrated that the cooperative heterosynaptic rule tends to produce a set
of final weights and weighted nodes similar to that seen in real biological data
(Figure 8).

Comparison of the resulting graph theoretic measures across several network
activity patterns reveal some interesting facts. The homosynaptic rule always
fails to give rise to small-world properties, while the cooperative heterosy-
naptic plasticity rule always produces small-worldness, albeit of differing mag-
nitudes. Networks with the competitive heterosynaptic plasticity rule emerge
with higher small-world measures in some instances. These cases occur when the
activity of the network is shifted towards the middle (normally distributed prob-
abilities, Beta(1,1)) or shifted right (negatively skewed distribution, Beta(4,1.5)).
That is, whenever a greater proportion of the network is active, the competitive
rules appears to induce a better small-world topology than the cooperative rule.
This may offer insight into the various circumstances/protocols wherein neural
networks in the brain implement a cooperative versus competitive heterosynap-
tic change. In activity patterns where the majority of firing rates are low, a
cooperative heterosynaptic rule encourages a greater small-world property, but
perhaps when network activity increases and a greater proportion of neurons
become active, the competitive heterosynaptic rule may be implemented to sta-
bilise the network properties and continue to maximise the small-world topology.
This was tested with the hybrid heterosynaptic plasticity rule.

We investigated the role of the three plasticity rules where the activity of
the network was variably dependent on the weights of nodes. This is arguably
a more realistic scenario, where those neurons with greater accumulations of
weights are more likely to be active, and those with few/weaker connections are
more likely to be silent, or sparse in activity. We found that the homosynap-
tic and competitive heterosynaptic plasticity rules fail to produce small-world
characteristics. However, the cooperative heterosynaptic rule induces distinc-
tive small-worldness (even stronger than in the previous constant pre-defined
activity patterns). This may be due to the fact that the framing of neural ac-
tivity in this weight-dependent way tends to preferentially involve a small sub-
set of nodes (which have higher weights) in the activity, generating a feedback
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loop which encourages high degrees of clustering around these neurons, forming
highly-interconnected hubs.

Finally, this study introduced a simple hybrid heterosynaptic plasticity rule
which combines cooperative and competitive learning under different activity
contexts. This resulted in graphs with higher small-world qualities than in any
of the other rules (R1, R2, R3). Importantly, this hybrid rule also kept the cost of
the network lower (i.e. more economical in terms of total network weights) than
that of the next best small-world inducing rule (R3). This has promising im-
plications for understanding not only the functions of heterosynaptic plasticity,
but the neural protocols and contexts in which various versions of this plasticity
are induced.

6 Conclusion

This research explored variants of plasticity rules in abstract weighted graphs
with a view to understanding their impacts upon network structure. We utilised
highly simplified versions of update rules and network activities, which allowed
for a tractable examination of the roles of different plasticity paradigms in differ-
ent network activity patterns. We demonstrated that heterosynaptic plasticity
may be a key player in neural networks for promoting and maintaining small-
world characteristics, and that competitive/cooperative aspects may have priori-
tised roles depending on the kind of network activity. We showed that a hybrid
heterosynaptic plasticity rule may have the potential under certain constraints
to optimise graph properties such as small-world qualities and economy. These
insights may be useful for better understanding aspects of brain learning, as well
as potentially optimising network structure for artificial intelligence and machine
learning contexts.
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emerges from plasticity in a minimalistic excitable network model,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 27, no. 4, p. 047406, Apr. 2017,
doi: 10.1063/1.4979561.
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